Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
Tieleman DP., Sansom MS., Berendsen HJ.
Alamethicin is an alpha-helical channel-forming peptide, which inserts into lipid bilayers in a voltage-dependent, asymmetrical fashion. Nanosecond molecular dynamics simulations have been used to compare alamethicin conformation and dynamics in three different environments: 1) in water; 2) in methanol; and 3) inserted into a lipid (palmitoyl-oleoyl-phosphatidylcholine) bilayer to form a transmembrane helix. In the bilayer and in methanol, there was little change (Calpha RMSD approximately 0.2 nm over 2 ns and 1 ns) from the initial helical conformation of the peptide. In water there were substantial changes (Calpha RMSD approximately 0.4 nm over 1 ns), especially in the C-terminal segment of the peptide, which lost its alpha-helical conformation. In the bilayer and in methanol, the alamethicin molecule underwent hinge-bending motion about its central Gly-X-X-Pro sequence motif. Analysis of H-bonding interactions revealed that the polar C-terminal side chains of alamethicin provided an "anchor" to the bilayer/water interface via formation of multiple H-bonds that persisted throughout the simulation. This explains why the preferred mode of helix insertion into the bilayer is N-terminal, which is believed to underlie the asymmetry of voltage activation of alamethicin channels.