Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ion channel of the nicotinic acetylcholine receptor (nAChR) is believed to be lined by transmembrane M2 helices. A "4-8-12" sequence motif, comprising serine (S) or threonine (T) residues at positions 4, 8 and 12 of M2, is conserved between different members, anion and cation selective, of the nAChR superfamily. Parallel bundles of 4-8-12 motif-containing helices are considered as simplified models of ion channels. The relationship between S and T sidechain conformations and channel-ion interactions is explored via evaluation of interaction energies of K+ and of Cl- ions with channel models. Energy calculations are used to determine optimal chi 2 (C alpha-C beta-O gamma-H gamma) values in the presence of K+ or Cl- ions. 4-8-12 motif-containing bundles may form favourable interactions with either cations or anions, dependent upon the chi 2 values adopted. Parallel-helix and tilted-helix bundles are considered, as are heteromeric models designed to mimic the Torpedo nAChR. The main conclusion of the study is that conformational flexibility at chi 2 enables both S and T residues to form favourable interactions with anions or cations. Consequently, there is apparently no difference between S and T residues in their interactions with permeant ions, which suggests that the presence of T vs. S residues within the 4-8-12 motif is not a major mechanism whereby anion/cation selectivity may be generated. The implications of these studies with respect to more elaborate models of nAChR and related receptors are considered.

Type

Journal article

Journal

Eur Biophys J

Publication Date

1992

Volume

21

Pages

281 - 298

Keywords

Amino Acid Sequence, Animals, Calorimetry, Hydrogen Bonding, Ion Channels, Models, Molecular, Molecular Sequence Data, Protein Structure, Secondary, Receptors, GABA-A, Receptors, N-Methyl-D-Aspartate, Receptors, Nicotinic, Receptors, Serotonin, Sequence Homology, Amino Acid, Serine, Threonine, Torpedo