Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have used molecular dynamics simulations, corresponding to a total simulation time of 11 ns, to investigate the effective short-time local diffusion coefficient of potassium and chloride ions in a series of model ion channels. These models, which include channels formed by the fungal peptide alamethicin, by a synthetic leucine-serine peptide, and by the pore-lining M2 helix bundle of the nicotinic acetylcholine receptor, have a range of different secondary structures, diameters and hydrophobicities. We find that the diffusion coefficients of both ions are appreciably reduced in the narrower channels, the extent of the reduction being similar for both the anionic and cationic species. This suggests that a difference in mobility cannot be the source of the ion selectivity exhibited by some of the channels (for example, the leucine-serine peptide). We find no evidence for a reduction in mobility of either ion in the nAChR model. These results are broadly in line with a previous similar study of Na+ ions, and may be useful in Poisson-Nernst-Planck, Eyring rate theory or Brownian dynamics calculations of channel conductance.


Journal article


Biophys Chem

Publication Date





129 - 151


Chlorides, Diffusion, Ion Channels, Models, Biological, Models, Molecular, Potassium, Proteins, Thermodynamics, Water