Ion-channel gating mechanisms: Model identification and parameter estimation from single channel recordings
Ball FG., Sansom MSP.
Patch-clamp data may be analysed in terms of Markov process models of channel gating mechanisms. We present a maximum likelihood algorithm for estimation of gating parameters from records where only a single channel is present. Computer simulated data for three different models of agonist receptor gated channels are used to demonstrate the performance of the procedure. Full details of the implementation of the algorithm are given for an example gating mechanism. The effects of omission of brief openings and closings from the single-channel data on parameter estimation are explored. A strategy for discriminating between alternative possible gating models, based upon use of the Schwarz criterion, is described. Omission of brief events is shown not to lead to incorrect model identification, except in extreme circumstances. Finally the algorithm is extended to include channel gating models exhibiting multiple conductance levels.