Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The influenza M2 protein is a simple membrane protein, containing a single transmembrane helix. It is representative of a very large family of single-transmembrane helix proteins. The functional protein is a tetramer, with the four transmembrane helices forming a proton-permeable channel across the bilayer. Two independently derived models of the M2 channel domain are compared, in order to assess the success of applying molecular modelling approaches to simple membrane proteins. RESULTS: The Calpha RSMD between the two models is 1.7 A. Both models are composed of a left-handed bundle of helices, with the helices tilted roughly 15 degrees relative to the (presumed) bilayer normal. The two models have similar pore radius profiles, with a pore cavity lined by the Ser31 and Gly34 residues and a pore constriction formed by the ring of His37 residues. CONCLUSIONS: Independent studies of M2 have converged on the same structural model for the channel domain. This model is in agreement with solid state NMR data. In particular, both model and NMR data indicate that the M2 helices are tilted relative to the bilayer normal and form a left-handed bundle. Such convergence suggests that, at least for simple membrane proteins, restraints-directed modelling might yield plausible models worthy of further computational and experimental investigation.

Original publication

DOI

10.1016/S1359-0278(98)00061-3

Type

Journal article

Journal

Fold Des

Publication Date

1998

Volume

3

Pages

443 - 448

Keywords

Magnetic Resonance Spectroscopy, Models, Molecular, Protein Folding, Viral Matrix Proteins