Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dermaseptins, a family of antimicrobial peptides, are believed to act by forming amphipathic alpha-helices which associate with the cell membrane, leading to its permeabilisation and disruption. A simple mean field method is described for simulation of the interactions of peptides with lipid bilayers which includes an approximate representation of the electrostatic effects of the head-group region of the bilayer. Starting from an atomistic model of a PC phospholipid bilayer we calculate an average electrostatic potential along the bilayer normal. By combining the interaction of the peptide with this electrostatic potential and with the hydrophobic core of the membrane we arrive at a more complete description of peptide-bilayer energetics than would be obtained using sidechain hydrophobicities alone. Using this interaction potential in MD simulations of the frog skin peptide dermaseptin B reveals that the lipid bilayer stabilises the alpha-helical conformation of the peptide. This is in agreement with FTIR data. A surface associated orientation thus appears to be the most stable arrangement of the peptide, at least at zero ionic strength and without taking account of possible peptide-peptide interactions.

Type

Journal article

Journal

Biophys Chem

Publication Date

01/02/1999

Volume

76

Pages

145 - 159

Keywords

Algorithms, Amino Acid Sequence, Amphibian Proteins, Anti-Bacterial Agents, Antimicrobial Cationic Peptides, Electrochemistry, Energy Transfer, Lipid Bilayers, Molecular Sequence Data, Peptides, Spectroscopy, Fourier Transform Infrared