Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The past year has seen major advances in our understanding of ion channels, resulting from molecular dynamics simulations and modelling studies. Simulations of gramicidin have revealed that proton conduction along a water wire is limited by the dynamics of water reorientation. Plausible models are now available for a number of other channels, including alamethicin, the influenza A virus M2 protein, and the pore domains of the nicotinic acetylcholine receptor and Kv channels. Molecular dynamics simulations and continuum calculations have revealed some of the subtleties of the interactions between transmembrane helices and their lipid bilayer environment.


Journal article


Curr Opin Struct Biol

Publication Date





237 - 244


Alamethicin, Animals, Bacteriorhodopsins, Gramicidin, Humans, Ion Channels, Lipid Bilayers, Membrane Proteins, Models, Molecular, Receptors, Nicotinic, Thermodynamics, Viral Matrix Proteins