Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alamethicin channels are prototypical helix bundles that may serve as tractable models for more complex protein ion channels. Solid-phase peptide synthesis of alamethicin analogues using FMOC-amino acid fluorides followed by chemical dimerization of these peptides facilitates structure-function studies of particular channel states in bilayer membranes. State 3 in particular, tentatively assigned to a hexameric helix bundle, is sufficiently long-lived that current-voltage measurements can be made during the lifetime of an individual channel opening. Molecular models of hexameric helix bundles, generated using restrained molecular dynamics with simulated annealing, indicate that a Gln7-->Asn7 (Q7-->N7) mutation will increase channel diameter locally. Experimentally, the conductance of state 3 of the N7-alm channel is found to be larger than that of the Q7-alm channel when ion flow is in the usual direction (cations entering the C-terminal end of the channel). When ion flow is in the opposite direction, no difference in the conductances of state 3 of Q7 and state 3 of N7 channels is observed. These results indicate that the effect of a change in pore diameter at position 7 is dependent on the magnitude of other barriers to permeation and that these barriers are voltage-dependent.

Original publication

DOI

10.1021/bi9716130

Type

Journal article

Journal

Biochemistry

Publication Date

11/11/1997

Volume

36

Pages

13873 - 13881

Keywords

Alamethicin, Amino Acid Sequence, Amino Acid Substitution, Asparagine, Dimerization, Electric Conductivity, Glutamine, Ion Channels, Membrane Potentials, Models, Molecular, Molecular Sequence Data, Mutagenesis, Site-Directed, Peptides, Protein Structure, Secondary, Structure-Activity Relationship