Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The M2 protein of influenza virus forms ion channels activated by low pH which are proton permeable and play a key role in the life cycle of the virus. M2 is a 97-residue integral membrane protein containing a single transmembrane (TM) helix. M2 is present as disulfide-linked homotetramers. The TM domain of M2 has been modeled as a bundle of four parallel M2 helices. The helix bundle forms a left-handed supercoil surrounding a central pore. Residue H37 has been implicated in the mechanism of low-pH activation of the channel. Models generated with H37 in a fully deprotonated state exhibit a pore occluded by a ring of H37 side chains oriented toward the lumen of the pore. Models with H37 in a fully protonated state no longer exhibit such occlusion of the pore, as the H37 side chains adopt a more interfacial location. Extended molecular dynamics simulations with water molecules within and at the mouths of the pores support this distinction between the H37-deprotonated and H37-protonated models. These simulations suggest that only in the H37-protonated model is there a continuous column of water extending the entire length of the central pore. A mechanism for activation of M2 by low pH is presented in which the H37-deprotonated model corresponds to the "closed" form of the channel, while the H37-protonated model corresponds to the "open" form. A switch from the closed to the open form of the channel occurs if H37 is protonated midway through a simulation. The open channel is suggested to contain a wire of H-bonded water molecules which enables proton permeability.

Original publication

DOI

10.1006/viro.1997.8578

Type

Journal article

Journal

Virology

Publication Date

23/06/1997

Volume

233

Pages

163 - 173

Keywords

Computer Simulation, Influenza A virus, Ion Channels, Models, Molecular, Molecular Structure, Templates, Genetic, Viral Matrix Proteins, Water