Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Membrane proteins, of which the majority seem to contain one or more alpha-helix, constitute approx. 30% of most genomes. A complete understanding of the nature of helix/bilayer interactions is necessary for an understanding of the structural principles underlying membrane proteins. This review describes computer simulation studies of helix/bilayer interactions. Key experimental studies of the interactions of alpha-helices and lipid bilayers are briefly reviewed. Surface associated helices are found in some membrane-bound enzymes (e.g. prostaglandin synthase), and as stages in the mechanisms of antimicrobial peptides and of pore-forming bacterial toxins. Transmembrane alpha-helices are found in most integral membrane proteins, and also in channels formed by amphipathic peptides or by bacterial toxins. Mean field simulations, in which the lipid bilayer is approximated as a hydrophobic continuum, have been used in studies of membrane-active peptides (e.g. alamethicin, melittin, magainin and dermaseptin) and of simple membrane proteins (e.g. phage Pf1 coat protein). All atom molecular dynamics simulations of fully solvated bilayers with transmembrane helices have been applied to: the constituent helices of bacteriorhodopsin; peptide-16 (a simple model TM helix); and a number of pore-lining helices from ion channels. Surface associated helices (e.g. melittin and dermaseptin) have been simulated, as have alpha-helical bundles such as bacteriorhodopsin and alamethicin. From comparison of the results from the two classes of simulation, it emerges that a major theoretical challenge is to exploit the results of all atom simulations in order to improve the mean field approach.

Type

Journal article

Journal

Biophys Chem

Publication Date

22/02/1999

Volume

76

Pages

161 - 183

Keywords

Amino Acid Sequence, Lipid Bilayers, Membrane Proteins, Molecular Sequence Data, Protein Binding, Protein Conformation