Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome and transcript sequences are composed of long strings of nucleotide monomers (A, C, G, and T/U) that require different quantities of nitrogen atoms for biosynthesis. Here, it is shown that the strength of selection acting on transcript nitrogen content is influenced by the amount of nitrogen plants require to conduct photosynthesis. Specifically, plants that require more nitrogen to conduct photosynthesis experience stronger selection on transcript sequences to use synonymous codons that cost less nitrogen to biosynthesize. It is further shown that the strength of selection acting on transcript nitrogen cost constrains molecular sequence evolution such that genes experiencing stronger selection evolve at a slower rate. Together these findings reveal that the plant molecular clock is set by photosynthetic efficiency, and provide a mechanistic explanation for changes in plant speciation rates that occur concomitant with improvements in photosynthetic efficiency and changes in the environment such as light, temperature, and atmospheric CO2 concentration.

Original publication

DOI

10.1093/molbev/msy043

Type

Journal article

Journal

Mol Biol Evol

Publication Date

01/07/2018

Volume

35

Pages

1616 - 1625