Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is increasing evidence showing that brain atrophy varies between patients with Alzheimer's disease (AD), suggesting that different anatomical patterns might exist within the same disorder. We investigated AD heterogeneity based on cortical and subcortical atrophy patterns in 299 AD subjects from 2 multicenter cohorts. Clusters of patients and important discriminative features were determined using random forest pairwise similarity, multidimensional scaling, and distance-based hierarchical clustering. We discovered 2 typical (72.2%) and 3 atypical (28.8%) subtypes with significantly different demographic, clinical, and cognitive characteristics, and different rates of cognitive decline. In contrast to previous studies, our unsupervised random forest approach based on cortical and subcortical volume measures and their linear and nonlinear interactions revealed more typical AD subtypes with important anatomically discriminative features, while the prevalence of atypical cases was lower. The hippocampal-sparing and typical AD subtypes exhibited worse clinical progression in visuospatial, memory, and executive cognitive functions. Our findings suggest there is substantial heterogeneity in AD that has an impact on how patients function and progress over time.

Original publication

DOI

10.1016/j.neurobiolaging.2018.01.009

Type

Journal article

Journal

Neurobiol Aging

Publication Date

05/2018

Volume

65

Pages

98 - 108

Keywords

Alzheimer's disease, Cluster analyses, Cortical volumes, Random forest similarity, Structural magnetic resonance imaging, Subcortical volumes