Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.

Original publication

DOI

10.1016/j.neuron.2018.01.033

Type

Journal article

Journal

Neuron

Publication Date

21/02/2018

Volume

97

Pages

806 - 822.e10

Keywords

CASPR2, CNTNAP2, DRG, Kv1, autism, autoantibody, mechanosensation, pain, sensory neuron, voltage-gated potassium channel, Animals, Cells, Cultured, Female, Ganglia, Spinal, Humans, Immunization, Passive, Immunoglobulin G, Male, Mechanotransduction, Cellular, Membrane Proteins, Mice, Inbred C57BL, Mice, Knockout, Nerve Tissue Proteins, Nociceptive Pain, Posterior Horn Cells, Sensory Receptor Cells, Shaker Superfamily of Potassium Channels