Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MacroD1 is a macrodomain containing protein that has mono-ADP-ribose hydrolase enzymatic activity toward several ADP-ribose adducts. Dysregulation of MacroD1 expression has been shown to be associated with the pathogenesis of several forms of cancer. To date, the physiological functions and sub-cellular localization of MacroD1 are unclear. Previous studies have described nuclear and cytosolic functions of MacroD1. However, in this study we show that endogenous MacroD1 protein is highly enriched within mitochondria. We also show that MacroD1 is highly expressed in human and mouse skeletal muscle. Furthermore, we show that MacroD1 can efficiently remove ADP-ribose from 5' and 3'-phosphorylated double stranded DNA adducts in vitro. Overall, we have shown that MacroD1 is a mitochondrial protein with promiscuous enzymatic activity that can target the ester bonds of ADP-ribosylated phosphorylated double-stranded DNA ends. These findings have exciting implications for MacroD1 and ADP-ribosylation within the regulation of mitochondrial function and DNA-damage in vivo.

Original publication

DOI

10.3389/fmicb.2018.00020

Type

Journal article

Journal

Front Microbiol

Publication Date

2018

Volume

9

Keywords

ADP-ribose, ADP-ribosylation, DNA damage repair, PARP, hydrolase, macrodomain, mitochondria