Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Epilepsy is a common neurological condition characterised by recurrent unprovoked seizures and often treatable with appropriate medication. However, almost 30% of cases are pharmacoresistant and while a proportion of these may be amenable to resective surgery, a gene therapy approach could be an attractive alternative option. Neuropeptide Y (NPY) has anticonvulsant and anti-epileptogenic properties in animal models of temporal lobe epilepsy when delivered by an adeno-associated viral (AAV) vector. Here we sought to demonstrate successful secretion of NPY from AAV-transduced human neuronal cells, which would be essential in planning any clinical trial. METHODS: A human neuroblastoma cell line (SH-SY5Y) was used to assess in vitro whether an AAV vector manufactured to clinical-grade protocols would be effective at transducing these cells to express NPY. Optimal transduction efficiency was first achieved with retinoic acid and tetradecanoylphorpol-13-acetate (TPA) treatment, prior to expose to AAV1-green fluorescent protein (GFP) reporter vector, AAV1-NPY therapeutic vector or sham treated with no vector. Levels of NPY in cell supernatants were determined using two antibody-based methods RESULTS: We found that the levels of NPY released into the cell culture media supernatant, and protein extracts of the cell pellet, were significantly higher following exposure to AAV1-NPY than when compared to either a control GFP reporter vector (AAV1-GFP) or sham treated controls. CONCLUSION: This first demonstration that an AAV-NPY construct can successfully transduce human neuronal cells supports the pre-clinical development of a clinical trial using AAV-based NPY for pharmacoresistant epilepsy.

Original publication

DOI

10.1016/j.seizure.2017.12.005

Type

Journal article

Journal

Seizure

Publication Date

02/2018

Volume

55

Pages

25 - 29

Keywords

AAV gene therapy, Epilepsy, Neuropeptide Y, SH-SY5Y cell line, Cell Line, Tumor, Dependovirus, Drug Resistant Epilepsy, Genetic Therapy, Genetic Vectors, Humans, Neuroblastoma, Neurons, Neuropeptide Y