Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Murine homeobox-containing genes (Hox genes) are postulated as playing key roles in the establishment of the anterior-posterior embryonic body axis, possibly providing cells with positional cues. Little is known, however, concerning how cells might respond to homeobox gene expression to interpret these cues. Since changes in the cell-surface are central to many processes in early development we reasoned that cells expressing different complements of Hox genes might have different surface properties. In order to investigate this we have used the sensitive, non-disruptive technique of multiple two-phase aqueous partition, which is able to detect small differences on the surface of intact cells. Using this technique we have found that ectopic expression of the murine Hox-3.3 gene in cultured cells induces reproducible changes in the cell surface. Changes only occurred above a threshold level of gene expression, but above this level a correlation between surface change and gene expression was seen. The implications for the establishment of a 'Hox' code of homeobox genes acting to specifically change cell-surface properties are discussed.


Journal article


Biochim Biophys Acta

Publication Date





253 - 258


Animals, Cell Membrane, Countercurrent Distribution, Embryo, Mammalian, Gene Expression, Gene Library, Genes, Homeobox, Mice, Transfection, Tumor Cells, Cultured