Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The F-spondin genes are a family of extracellular matrix molecules united by two conserved domains, FS1 and FS2, at the amino terminus plus a variable number of thrombospondin repeats at the carboxy terminus. Currently, characterized members include a single gene in Drosophila and multiple genes in vertebrates. The vertebrate genes are expressed in the midline of the developing embryo, primarily in the floor plate of the neural tube. To investigate the evolution of chordate F-spondin genes, I have used the basal position in chordate phylogeny of the acraniate amphioxus. A single F-spondin-related gene, named AmphiF-spondin, was isolated from amphioxus. Based on molecular phylogenetics, AmphiF-spondin is closely related to a particular subgroup of vertebrate F-spondin genes that encode six thrombospondin repeats. However, unlike these genes, expression of AmphiF-spondin is not confined to the midline but is found through most of the central nervous system. Additionally, AmphiF-spondin has lost three thrombospondin repeats and gained two fibronectin type III repeats, one of which has strong identity to a fibronectin type III repeat from Deleted in Colorectal Cancer (DCC). Taken together, these results suggest a complex evolutionary history for chordate F-spondin genes that includes (1) domain loss, (2) domain gain by tandem duplication and divergence of existing domains, and (3) gain of heterologous domains by exon shuffling.

Original publication

DOI

10.1093/oxfordjournals.molbev.a026029

Type

Journal article

Journal

Mol Biol Evol

Publication Date

09/1998

Volume

15

Pages

1218 - 1223

Keywords

Amino Acid Sequence, Animals, Base Sequence, Chordata, Nonvertebrate, Cloning, Molecular, DNA Primers, Evolution, Molecular, Gene Expression Regulation, Developmental, Growth Substances, Molecular Sequence Data, Neural Cell Adhesion Molecules, Peptides, Phylogeny, Sequence Homology, Amino Acid