Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have characterized two novel, complex, heterochromatic repeat sequences, MS3 and MS4, isolated from Microtus rossiaemeridionalis genomic DNA. Sequence analysis indicates that both repeats consist of unique sequences interrupted by repeat elements of different origin and can be classified as long complex repeat units (LCRUs). A unique feature of both repeat units is the presence of short interspersed repeat elements (SINEs), which are usually characteristic of the euchromatic part of the genome. Comparative analysis revealed no significant stretches of homology in the nucleotide sequences between the two repeats, suggesting that the repeats originated independently during the course of vole genome evolution. Fluorescence in situ hybridization analysis demonstrates that MS3 and MS4 occupy distinct domains in the heterochromatic regions of the sex chromosomes in M. transcaspicus and M. arvalis but collocalize in M. rossiaemeridionalis and M. kirgisorum heterochromatic blocks. The localization pattern of the repeats on the vole chromosomes confirms the independent origin of the two repeats and suggests that expansion of the heterochromatic blocks has occurred subsequent to speciation.

Type

Journal article

Journal

Chromosome Res

Publication Date

08/1998

Volume

6

Pages

351 - 360

Keywords

Animals, Arvicolinae, Base Sequence, Blotting, Southern, Chromosome Mapping, Cloning, Molecular, Cytogenetics, Evolution, Molecular, Female, Heterochromatin, In Situ Hybridization, Fluorescence, Male, Mice, Molecular Sequence Data, Nucleic Acid Hybridization, Repetitive Sequences, Nucleic Acid, Sequence Alignment, Sequence Analysis, DNA, Sex Chromosomes