Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The response of free-swimming Rhodobacter sphaeroides to increases and decreases in the intensity of light of different wavelengths was analyzed. There was a transient (1 to 2 s) increase in swimming speed in response to an increase in light intensity, and there was a similar transient stop when the light intensity decreased. Measurement of changes in membrane potential and the use of electron transport inhibitors showed that the transient increase in swimming speed, following an increase in light intensity, and the stop following its decrease were the result of changes in photosynthetic electron transport. R. sphaeroides has two operons coding for multiple homologs of the enteric chemosensory genes. Mutants in the first chemosensory operon showed wild-type photoresponses. Mutants with the cheA gene of the second operon (cheAII) deleted, either with or without the first operon present, showed inverted photoresponses, with free-swimming cells stopping on an increase in light intensity and increasing swimming speed on a decrease. These mutants also lacked adaptation. Transposon mutants with mutations in cheAII, which also reduced expression of downstream genes, however, showed no photoresponses. These results show that (i) free-swimming cells respond to both an increase and a decrease in light intensity (tethered cells only show the stopping on a step down in light intensity), (ii) the signal comes from photosynthetic electron transfer, and (iii) the signal is primarily channelled through the second chemosensory pathway. The different responses shown by the cheAII deletion and insertion mutants suggest that CheWII is required for photoresponses, and a third sensory pathway can substitute for CheAII as long as CheWII is present. The inverted response suggests that transducers are involved in photoresponses as well as chemotactic responses.

Type

Journal article

Journal

J Bacteriol

Publication Date

01/1999

Volume

181

Pages

34 - 39

Keywords

Antimycin A, Bacterial Proteins, Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone, Chemotaxis, Electron Transport, Genes, Bacterial, Kinetics, Light, Membrane Proteins, Methacrylates, Methyl-Accepting Chemotaxis Proteins, Movement, Mutation, Photosynthesis, Rhodobacter sphaeroides, Signal Transduction, Thiazoles, Uncoupling Agents