Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Escherichia coli chemotaxis signal transduction pathway has: CheA, a histidine protein kinase; CheW, a linker between CheA and sensory proteins; CheY, the effector; and CheZ, a signal terminator. Rhodobacter sphaeroides has multiple copies of these proteins (2 x CheA, 3 x CheW and 3 x CheY, but no CheZ). In this study, we found a fourth cheY and expressed these R. sphaeroides proteins in E. coli. CheA2 (but not CheA1) restored swarming to an E. coli cheA mutant (RP9535). CheW3 (but not CheW2) restored swarming to a cheW mutant of E. coli (RP4606). R. sphaeroides CheYs did not affect E. coli lacking CheY, but restored swarming to a cheZ strain (RP1616), indicating that they can act as signal terminators in E. coli. An E. coli CheY, which is phosphorylated but cannot bind the motor (CheY109KR), was expressed in RP1616 but had no effect. Overexpression of CheA2, CheW2, CheW3, CheY1, CheY3 and CheY4 inhibited chemotaxis of wild-type E. coli (RP437) by increasing its smooth-swimming bias. While some R. sphaeroides proteins restore tumbling to smooth-swimming E. coli mutants, their activity is not controlled by the chemosensory receptors. R. sphaeroides possesses a phosphorelay cascade compatible with that of E. coli, but has additional incompatible homologues.


Journal article


Mol Microbiol

Publication Date





101 - 112


Amino Acid Sequence, Bacterial Proteins, Chemotaxis, Cloning, Molecular, Escherichia coli, Escherichia coli Proteins, Histidine Kinase, Membrane Proteins, Methyl-Accepting Chemotaxis Proteins, Molecular Sequence Data, Mutation, Recombinant Proteins, Rhodobacter sphaeroides, Sequence Homology, Amino Acid, Signal Transduction, Species Specificity