Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Rhodobacter sphaeroides cells were tethered by their flagella and subjected to increasing and decreasing nutrient gradients. Using motion analysis, changes in flagellar motor rotation were measured and the responses of the cells to the chemotactic gradients were determined. The steepness and concentration ranges of increasing and decreasing gradients were varied, and the bacterial responses were measured. This allowed the limits of gradients that would invoke changes in flagellar behavior to be determined and thus predicts the nature of gradients that would evoke chemotaxis in the environment. The sensory threshold was measured at 30 nM, and the response showed saturation at 150 microM. The study determined that cells detected and responded to changing concentration rates as low as 1 nM/s for acetate and 5 nM/s for succinate. The complex sensory system of R. sphaeroides responded to both increasing and decreasing concentration gradients of attractant with different sensitivities. In addition, transition phases involving changes in the motor speed and the smoothness of motor rotation were found.

Type

Journal article

Journal

Appl Environ Microbiol

Publication Date

12/2000

Volume

66

Pages

5186 - 5191

Keywords

Acetic Acid, Chemotaxis, Flagella, Kinetics, Molecular Motor Proteins, Rhodobacter sphaeroides, Rotation, Succinic Acid