Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1-3 and Clb1-6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling "Start" (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and "Finish" (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast.

Type

Journal article

Journal

Mol Biol Cell

Publication Date

2000

Volume

11

Pages

369 - 391

Keywords

*Cell Cycle Cyclin B/genetics/metabolism Cyclin-Dependent Kinase Inhibitor Proteins Cyclins/genetics DNA, Fungal/biosynthesis Fungal Proteins/genetics/physiology Gene Dosage Intracellular Signaling Peptides and Proteins Models, Molecular Mutation Peptides/metabolism Pheromones/metabolism Phosphoproteins/genetics/physiology Saccharomyces cerevisiae/genetics/metabolism/*physiology *Saccharomyces cerevisiae Proteins Time Factors