Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

p53 is activated in response to events compromising the genetic integrity of a cell. Recent data show that p53 activity does not increase steadily with genetic damage but rather fluctuates in an oscillatory fashion. Theoretical studies suggest that oscillations can arise from a combination of positive and negative feedbacks or from a long negative feedback loop alone. Both negative and positive feedbacks are present in the p53/Mdm2 network, but it is not known what roles they play in the oscillatory response to DNA damage. We developed a mathematical model of p53 oscillations based on positive and negative feedbacks in the p53/Mdm2 network. According to the model, the system reacts to DNA damage by moving from a stable steady state into a region of stable limit cycles. Oscillations in the model are born with large amplitude, which guarantees an all-or-none response to damage. As p53 oscillates, damage is repaired and the system moves back to a stable steady state with low p53 activity. The model reproduces experimental data in quantitative detail. We suggest new experiments for dissecting the contributions of negative and positive feedbacks to the generation of oscillations.


Journal article


Cell Cycle

Publication Date





488 - 493


Animals Cell Cycle DNA Damage Feedback, Physiological Gene Expression Regulation Humans Models, Biological Open Reading Frames Oscillometry Proto-Oncogene Proteins/chemistry Proto-Oncogene Proteins c-mdm2/chemistry/*metabolism Transcription, Genetic Tumor Suppressor Protein p53/chemistry/*metabolism