Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The inwardly-rectifying potassium channel subunit Kir5.1 selectively co-assembles with members of the Kir4.0 subfamily to form novel pH-sensitive heteromeric channels with unique single channel properties. In this study, we have cloned orthologs of Kir4.1 and Kir5.1 from the genome of the amphibian, Xenopus tropicalis (Xt). Heteromeric XtKir4.1/XtKir5.1 channels exhibit similar macroscopic current properties to rat Kir4.1/Kir5.1 with a faster time-dependent rate of activation. However, single channel analysis of heteromeric XtKir4.1/XtKir5.1 channels reveals that they have markedly different long-lived, multi-level subconductance states. Furthermore, we demonstrate that the XtKir5.1 subunit is responsible for these prominent subconductance levels. These results are consistent with a model in which the slow transitions between sublevel states represent the movement of individual subunits. These novel channels now provide an excellent model system to determine the structural basis of subconductance levels and contribution of heteromeric pore architecture to this process.

Original publication

DOI

10.1016/j.bbrc.2009.08.032

Type

Journal article

Journal

Biochem Biophys Res Commun

Publication Date

23/10/2009

Volume

388

Pages

501 - 505

Keywords

Animals, Electrophysiological Phenomena, Potassium Channels, Inwardly Rectifying, Protein Multimerization, Rats, Xenopus