Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The formation of genomic loops by proteins bound at sites scattered along a chromosome has a central role in many cellular processes, such as transcription, recombination and replication. Until recently, few such loops had been analyzed in any detail, and there was little agreement about the nature of the molecular ties maintaining these loops. Recent evidence suggests that loops are found in both prokaryotes and eukaryotes, and that the transcription machinery is a molecular tie. In addition, results obtained using site-specific recombination in bacteria and chromosome conformation capture in eukaryotes support the idea that active transcription units are in close contact. These data are consistent with a model for genome organization in which active polymerases cluster into transcription 'factories', which, inevitably, loops the intervening DNA. They are also consistent with the ties functioning as barriers, silencers, enhancers or locus control regions, depending on their positions relative to other genes.

Original publication

DOI

10.1016/j.tig.2007.01.007

Type

Journal article

Journal

Trends Genet

Publication Date

03/2007

Volume

23

Pages

126 - 133

Keywords

Animals, DNA, DNA Replication, Genome, Humans, Locus Control Region, Models, Genetic, Nucleic Acid Conformation, Recombination, Genetic, Transcription Factors, Transcription, Genetic