How do algae form multicellular groups?
Kapsetaki SE., Tep A., West SA.
© 2017 Eugenio Larios. Background: Theory suggests that how groups are formed can have a significant influence on the evolution of cooperation, and whether cooperative groups make the major evolutionary transition to a higher-level individual. The formation of clonal groups, by remaining with parents (subsocial group formation), leads to a greater kin selected benefit of cooperation, compared with formation of groups by aggregating, with potential non-relatives (semisocial group formation). Freshwater algae form multicellular groups in response to the presence of predators, but it is not clear whether they form groups by remaining together or by aggregation. Organisms: The freshwater algae Chlorella sorokiniana, Chlorella vulgaris, and Scenedesmus obliquus, and the freshwater crustacean predator Daphnia magna. Results: Fluorescence microscopy and time-lapse photography revealed that, in response to predator supernatant/live predators, these algae form groups by both remaining with parents and aggregation. Additionally, different algal species form mixed-species multicellular groups in response to predation. Conclusion: The observation of aggregation, even between species: (1) emphasizes the likelihood of direct fitness benefits of forming groups to avoid predation; and (2) strengthens the across-species correlation between the method of group formation and whether multicellularity is facultative or obligate.