Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A pressing challenge for ecologists is predicting how human-driven environmental changes will affect the complex pattern of interactions among species in a community. Weighted networks are an important tool for studying changes in interspecific interactions because they record interaction frequencies in addition to presence or absence at a field site. Here we show that changes in weighted network structure following habitat modification are, in principle, predictable. Our approach combines field data with mathematical models: the models separate changes in relative species abundance from changes in interaction preferences (which describe how interaction frequencies deviate from random encounters). The models with the best predictive ability compared to data requirement are those that capture systematic changes in interaction preferences between different habitat types. Our results suggest a viable approach for predicting the consequences of rapid environmental change for the structure of complex ecological networks, even in the absence of detailed, system-specific empirical data.In a changing world, the ability to predict the impact of environmental change on ecological communities is essential. Here, the authors show that by separating species abundances from interaction preferences, they can predict the effects of habitat modification on the structure of weighted species interaction networks, even with limited data.

Original publication




Journal article


Nat Commun

Publication Date





Animals, Ecology, Ecosystem, Ecuador, Food Chain, Grassland, Host-Parasite Interactions, Indonesia, Models, Biological, Models, Theoretical, Switzerland