Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Affective bias, the tendency to differentially prioritise the processing of negative relative to positive events, is commonly observed in clinical and non-clinical populations. However, why such biases develop is not known. Using a computational framework, we investigated whether affective biases may reflect individuals' estimates of the information content of negative relative to positive events. During a reinforcement learning task, the information content of positive and negative outcomes was manipulated independently by varying the volatility of their occurrence. Human participants altered the learning rates used for the outcomes selectively, preferentially learning from the most informative. This behaviour was associated with activity of the central norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain independent estimates of the information content of distinct positive and negative outcomes which may bias their processing of affective events. Normalising affective biases using computationally inspired interventions may represent a novel approach to treatment development.

Original publication




Journal article



Publication Date





computational Modelling, depression, human, learning, neuroscience, norepinepherine, pupilometry, Adolescent, Adult, Aged, Behavior, Decision Making, Female, Humans, Learning, Male, Middle Aged, Punishment, Reward, Young Adult