Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Flying insects use compensatory head movements to stabilize gaze. Like other optokinetic responses, these movements can reduce image displacement, motion and misalignment, and simplify the optic flow field. Because gaze is imperfectly stabilized in insects, we hypothesized that compensatory head movements serve to extend the range of velocities of self-motion that the visual system encodes. We tested this by measuring head movements in hawkmoths Hyles lineata responding to full-field visual stimuli of differing oscillation amplitudes, oscillation frequencies and spatial frequencies. We used frequency-domain system identification techniques to characterize the head's roll response, and simulated how this would have affected the output of the motion vision system, modelled as a computational array of Reichardt detectors. The moths' head movements were modulated to allow encoding of both fast and slow self-motion, effectively quadrupling the working range of the visual system for flight control. By using its own output to drive compensatory head movements, the motion vision system thereby works as an adaptive sensor, which will be especially beneficial in nocturnal species with inherently slow vision. Studies of the ecology of motion vision must therefore consider the tuning of motion-sensitive interneurons in the context of the closed-loop systems in which they function.

Original publication

DOI

10.1098/rspb.2017.1622

Type

Journal article

Journal

Proc Biol Sci

Publication Date

11/10/2017

Volume

284

Keywords

elementary motion detector, eye movements, flight control, gaze stabilization, head movements, motion vision, Animals, Flight, Animal, Head Movements, Moths, Motion Perception, Photic Stimulation