Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A central problem in evolutionary biology is to determine whether and how social interactions contribute to natural selection. A key method for phenotypic data is social selection analysis, in which fitness effects from social partners contribute to selection only when there is a correlation between the traits of individuals and their social partners (nonrandom phenotypic assortment). However, there are inconsistencies in the use of social selection that center around the measurement of phenotypic assortment. Here, we use data analysis and simulations to resolve these inconsistencies, showing that: (i) not all measures of assortment are suitable for social selection analysis; and (ii) the interpretation of assortment, and how to detect nonrandom assortment, will depend on the scale at which it is measured. We discuss links to kin selection theory and provide a practical guide for the social selection approach.

Original publication




Journal article



Publication Date





2693 - 2702


Contextual analysis, evolutionary quantitative genetics, kin selection, multilevel selection, social network analysis, social selection, Animals, Birds, Coleoptera, Genetic Fitness, Models, Genetic, Phenotype, Selection, Genetic, Social Behavior