Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The internal and external anatomy of the posterior metathoracic region, pregenital abdomen, and associated nervous system of the heteropteran infraorder Enicocephalomorpha are thoroughly described, using an array of state-of-the art techniques. Based on morphology, it is hypothesised which modes of communication these insects use. This study is based primarily on an undescribed species of Cocles Bergroth, 1905 (Enicocephalidae) and another undescribed species of Lomagostus Villiers, 1958 (Aenictopecheidae), but additional representatives of the infraorder are also examined. Our results are compared with the literature on other Heteroptera. The metathoracic scent gland system of Enicocephalomorpha uses the same muscles as that of more derived Heteroptera, although the efferent system is different. The presence of a tergal plate and well-developed longitudinal musculature in the families Enicocephalidae and Aenictopecheidae, as well as a sexually dimorphic set of sclerites and membranes that allow an as yet undetermined type of motion, may indicate the presence of vibrational signaling in the infraorder, although experimental confirmation is required. Our findings raise new research questions regarding heteropteran functional morphology and communication.

Original publication

DOI

10.1016/j.asd.2017.08.006

Type

Journal article

Journal

Arthropod Struct Dev

Publication Date

11/2017

Volume

46

Pages

843 - 868

Keywords

Aenictopecheidae, Enicocephalidae, Musculature, Nervous system, Scent gland, Vibrational signaling, Abdomen, Animal Communication, Animals, Exocrine Glands, Female, Heteroptera, Male, Microscopy, Confocal, Microscopy, Electron, Scanning, Nervous System, Scent Glands