Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bacteria perform cooperative behaviors that are exploitable by noncooperative cheats, and cheats frequently arise and coexist with cooperators in laboratory microcosms. However, evidence of competitive dynamics between cooperators and cheats in nature remains limited. Using the production of pyoverdine, an iron-scavenging molecule, and natural soil populations of Pseudomonas fluorescens, we found that (1) nonproducers are present in the population; (2) they co-occur (<1cm3 ) with pyoverdine producers; (3) they retain functional pyoverdine receptors; and (4) they can use the pyoverdine of on average 52% of producers. This suggests nonproducers can potentially act as social cheats in soil: utilizing the pyoverdine of others while producing little or none themselves. However, we found considerable variation in the extent to which nonproducers can exploit producers, as some isolates appear to produce exclusive forms of pyoverdine or kill nonproducers with toxins. We examined the consequences of this variation using theoretical modeling. We found variance in exploitability leads to some cheats gaining increased fitness benefits and others decreased benefits. However, the absolute gain in fitness from high exploitation is lower than the drop in fitness from low exploitation, decreasing the mean fitness of cheats and subsequently lowering the proportion of cheats maintained in the population. Our results suggest that although cooperator-cheat dynamics can occur in soil, a range of mechanisms can prevent nonproducers from exploiting producers.

Original publication

DOI

10.1111/evo.13328

Type

Journal article

Journal

Evolution

Publication Date

10/2017

Volume

71

Pages

2484 - 2495

Keywords

Bacteria, Cheating, Cooperation, Pyoverdine, Social Evolution, Soil, Genetic Fitness, Genetic Variation, Microbial Interactions, Oligopeptides, Pseudomonas, Soil Microbiology