Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Human leucocyte antigens (HLAs) are responsible for the display of peptide fragments for recognition by T-cell receptors. The gene family encoding them is thus integral to human adaptive immunity, and likely to be under strong pathogen selection. Despite this, it has proved difficult to demonstrate specific examples of pathogen-HLA coevolution. Selection from multiple pathogens simultaneously could explain why the evolutionary signatures of particular pathogens on HLAs have proved elusive. Here, we present an individual-based model of HLA evolution in the presence of two mortality-causing pathogens. We demonstrate that it is likely that individual pathogen species causing high mortality have left recognizable signatures on the HLA genomic region, despite more than one pathogen being present. Such signatures are likely to exist at the whole-population level, and involve haplotypic combinations of HLA genes rather than single loci.

Original publication

DOI

10.1017/S0031182017001159

Type

Journal article

Journal

Parasitology

Publication Date

15/08/2017

Pages

1 - 12

Keywords

host pathogen coevolution, human evolution, human leucocyte antigen (HLA), pathogen selection