Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ATP fuels the removal of metabolic end-products, including H+ ions that profoundly modulate biological activities. Energetic resources in hypoxic tumor regions are constrained by low-yielding glycolysis, and any means of reducing the cost of acid extrusion, without compromising pH homeostasis, would therefore be advantageous for cancer cells. Some cancers express connexin channels that allow solute exchange between cells, and we propose that, via this route, normoxic cells supply hypoxic neighbors with acid-neutralizing HCO3- ions. This hypothesis was tested by imaging cytoplasmic pH in spheroidal tissue growths of connexin43-positive pancreatic cancer Colo357 cells during light-controlled H+ uncaging at the hypoxic core. Cytoplasmic acid retention at the core was halved in the presence of CO2/HCO3-, but this process requires a restorative HCO3- flux. The effect of CO2/HCO3- was ablated by connexin43 inhibition or knockdown. In connexin-decoupled spheroids, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), an inhibitor of HCO3- uptake, had no effect on cytoplasmic [H+] in the H+-uncaging region, indicating that DIDS-sensitive transport is not an adequate pH-regulatory strategy therein. With intact connexin-coupling, acid retention at the core increased upon DIDS treatment, indicating that HCO3- ions are taken up actively by peripheral cells and then transmitted passively to cells at the hypoxic core. Thus, the energetic burden of pH regulation is offloaded from hypoxic cells onto metabolically altruistic normoxic neighbors.-Dovmark, T. H., Hulikova, A., Niederer, S. A., Vaughan-Jones, R. D., Swietach, P. Normoxic cells remotely regulate the acid-base balance of cells at the hypoxic core of connexin-coupled tumor growths.

Original publication

DOI

10.1096/fj.201700480R

Type

Journal article

Journal

FASEB J

Publication Date

01/2018

Volume

32

Pages

83 - 96

Keywords

bicarbonate transport, gap junctions, homeostasis, metabolic altruism, pancreatic cancer