Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The dysregulation of endogenous rhythms within brain networks have been implicated in a broad range of motor and non-motor pathologies. Essential tremor (ET), classically the purview of a single aberrant pacemaker, has recently become associated with network-level dysfunction across multiple brain regions. Specifically, it has been suggested that motor cortex constitutes an important node in a tremor-generating network involving the cerebellum. Yet the mechanisms by which these regions relate to tremor remain a matter of considerable debate. We sought to discriminate the contributions of cerebral and cerebellar dysregulation by combining high-density electroencephalography with subject-specific structural MRI. For that, we contrasted ET with voluntary (mimicked) tremor before and after ingestion of alcohol to regulate the tremorgenic networks. Our results demonstrate distinct loci of cortical tremor coherence, most pronounced over the sensorimotor cortices in healthy controls, but more frontal motor areas in ET-patients consistent with a heightened involvement of the supplementary motor area. We further demonstrate that the reduction in tremor amplitude associated with alcohol intake is reflected in altered cerebellar - but not cerebral - coupling with movement. Taken together, these findings implicate tremor emergence as principally associated with increases in activity within frontal motor regions, whereas modulation of the amplitude of established tremor relates to changes in cerebellar activity. These findings progress a mechanistic understanding of ET and implicate network-level vulnerabilities in the rhythmic nature of communication throughout the brain.

Original publication

DOI

10.1016/j.expneurol.2017.07.013

Type

Journal article

Journal

Exp Neurol

Publication Date

11/2017

Volume

297

Pages

50 - 61

Keywords

Beamformer, DICS, Essential tremor, MRI, Adult, Aged, Alcohol Drinking, Cerebellum, Cerebral Cortex, Electroencephalography, Essential Tremor, Ethanol, Female, Humans, Male, Middle Aged, Nerve Net, Photic Stimulation, Psychomotor Performance, Reaction Time