Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Converging data suggest that abnormal synchronised oscillatory activity in the basal ganglia may contribute to bradykinesia in patients with Parkinson's disease. This synchrony preferentially occurs over 10-30 Hz, the so-called beta band. Correlative evidence has been supplemented by experiments in which direct stimulation of the basal ganglia in the beta band slows movement. Yet questions remain regarding the small scale of the latter effects and whether synchrony is an early or even obligatory feature of parkinsonism. Nevertheless, the principle that abnormally synchronised activity in the beta band can disrupt the function finds a precedent in the syndrome of cortical myoclonus. Here, pathologically synchronised discharges of pyramidal neurons are transmitted to the healthy spinal cord. The result is the synchronous discharge of motor units leading to rhythmic jerking.

Original publication

DOI

10.1016/j.conb.2007.12.001

Type

Journal article

Journal

Curr Opin Neurobiol

Publication Date

12/2007

Volume

17

Pages

656 - 664

Keywords

Animals, Basal Ganglia, Cerebellum, Cerebral Cortex, Cortical Synchronization, Deep Brain Stimulation, Electroencephalography, Humans, Movement Disorders