Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The pattern of neuronal discharge within the basal ganglia is disturbed in Parkinson's disease (PD). In particular, there is a tendency for neuronal elements to synchronise at around 20 Hz in the absence of dopaminergic treatment, whereas this activity can be replaced by spontaneous synchronisation at much higher frequencies (>70 Hz) following dopaminergic treatment [J. Neurosci. 21 (2001) 1033; Brain 126 (2003) 2153]. In two PD patients (3 sides), we show that stimulating the subthalamic area at around 20 Hz exacerbates synchronisation at similar frequencies in the globus pallidus interna, the major output structure of the human basal ganglia. In contrast, stimulating the subthalamic area at >70 Hz suppresses pallidal activity at about 20 Hz. Clinically, stimulation of the subthalamic area at similar high frequencies reverses parkinsonism and forms the basis of therapeutic deep brain stimulation in PD. The results point to a possible common mechanism by which both dopaminergic treatment associated synchronisation of subthalamic activity at very high frequency and synchronisation imposed by therapeutic stimulation of the subthalamic area inhibit an abnormal and potentially deleterious synchronisation of basal ganglia output at around 20 Hz. If this activity is unchecked by synchronisation at higher frequency, then pathological 20-Hz oscillations may cascade through the basal ganglia, increasing at subsequent levels of processing.

Original publication

DOI

10.1016/j.expneurol.2004.05.009

Type

Journal article

Journal

Exp Neurol

Publication Date

08/2004

Volume

188

Pages

480 - 490

Keywords

Aged, Biological Clocks, Electric Stimulation Therapy, Electrodes, Implanted, Electroencephalography, Female, Globus Pallidus, Humans, Magnetic Resonance Imaging, Male, Membrane Potentials, Middle Aged, Parkinson Disease, Signal Processing, Computer-Assisted, Subthalamus, Synaptic Transmission