Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This work serves as a proof-of-concept for bacterially derived SimCells (Simple Cells), which contain the cell machinery from bacteria and designed DNA (or potentially a simplified genome) to instruct the cell to carry out novel, specific tasks. SimCells represent a reprogrammable chassis without a native chromosome, which can host designed DNA to perform defined functions. In this paper, the use of Escherichia coli MC1000 ∆minD minicells as a non-reproducing chassis for SimCells was explored, as demonstrated by their ability to act as sensitive biosensors for small molecules. Highly purified minicells derived from E. coli strains containing gene circuits for biosensing were able to transduce the input signals from several small molecules (glucarate, acrylate and arabinose) into the production of green fluorescent protein (GFP). A mathematical model was developed to fit the experimental data for induction of gene expression in SimCells. The intracellular ATP level was shown to be important for SimCell function. A purification and storage protocol was developed to prepare SimCells which could retain their functions for an extended period of time. This study demonstrates that SimCells are able to perform as 'smart bioparticles' controlled by designed gene circuits.

Original publication




Journal article


Sci Rep

Publication Date