Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RATIONALE: Chronic obstructive pulmonary disease (COPD) is characterized by impaired clearance of pulmonary bacteria. OBJECTIVES: The effect of COPD on alveolar macrophage (AM) microbicidal responses was investigated. METHODS: AMs were obtained from bronchoalveolar lavage from healthy donors or patients with COPD and challenged with opsonized serotype 14 Streptococcus pneumoniae. Cells were assessed for apoptosis, bactericidal activity, and mitochondrial reactive oxygen species (mROS) production. A transgenic mouse line in which the CD68 promoter ensures macrophage-specific expression of human induced myeloid leukemia cell differentiation protein Mcl-1 (CD68.hMcl-1) was used to model the molecular aspects of COPD. MEASUREMENTS AND MAIN RESULTS: COPD AMs had elevated levels of Mcl-1, an antiapoptotic B-cell lymphoma 2 family member, with selective reduction of delayed intracellular bacterial killing. CD68.hMcl-1 AMs phenocopied the microbicidal defect because transgenic mice demonstrated impaired clearance of pulmonary bacteria and increased neutrophilic inflammation. Murine bone marrow-derived macrophages and human monocyte-derived macrophages generated mROS in response to pneumococci, which colocalized with bacteria and phagolysosomes to enhance bacterial killing. The Mcl-1 transgene increased oxygen consumption rates and mROS expression in mock-infected bone marrow-derived macrophages but reduced caspase-dependent mROS production after pneumococcal challenge. COPD AMs also increased basal mROS expression, but they failed to increase production after pneumococcal challenge, in keeping with reduced intracellular bacterial killing. The defect in COPD AM intracellular killing was associated with a reduced ratio of mROS/superoxide dismutase 2. CONCLUSIONS: Up-regulation of Mcl-1 and chronic adaption to oxidative stress alter mitochondrial metabolism and microbicidal function, reducing the delayed phase of intracellular bacterial clearance in COPD.

Original publication




Journal article


Am J Respir Crit Care Med

Publication Date





845 - 855


Streptococcus pneumoniae, apoptosis, mitochondrial reactive oxygen species, Animals, Anti-Infective Agents, Blotting, Western, Bronchoalveolar Lavage, Disease Models, Animal, Flow Cytometry, Humans, Macrophages, Alveolar, Mice, Mice, Transgenic, Mitochondria, Oxidative Stress, Pulmonary Disease, Chronic Obstructive