Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Stem cells have been assumed to demonstrate a reliance on anaerobic energy generation, suited to their hypoxic in vivo environment. However, we found that human mesenchymal stem cells (hMSCs) have an active oxidative metabolism with a range of substrates. More ATP was consistently produced from substrate oxidation than glycolysis by cultured hMSCs. Strong substrate preferences were shown with the ketone body, acetoacetate, being oxidised at up to 35 times the rate of glucose. ROS-generation was 45-fold lower during acetoacetate oxidation compared with glucose and substrate preference may be an adaptation to reduce oxidative stress. The UCP2 inhibitor, genipin, increased ROS production with either acetoacetate or glucose by 2-fold, indicating a role for UCP2 in suppressing ROS production. Addition of pyruvate stimulated acetoacetate oxidation and this combination increased ATP production 27-fold, compared with glucose alone, which has implications for growth medium composition. Oxygen tension during culture affected metabolism by hMSCs. Between passages 2 and 5, rates of both glycolysis and substrate-oxidation increased at least 2-fold for normoxic (20% O2)- but not hypoxic (5% O2)-cultured hMSCs, despite declining growth rates and no detectable signs of differentiation. Culture of the cells with 3-hydroxybutyrate abolished the increased rates of these pathways. These findings have implications for stem cell therapy, which necessarily involves in vitro culture of cells, since low passage number normoxic cultured stem cells show metabolic adaptations without detectable changes in stem-like status.

Original publication

DOI

10.1016/j.biocel.2017.05.007

Type

Journal article

Journal

Int J Biochem Cell Biol

Publication Date

07/2017

Volume

88

Pages

75 - 83

Keywords

Acetoacetate, Glycolysis, Oxidation, ROS, Stem cells, Acetoacetates, Adenosine Triphosphate, Adipocytes, Aerobiosis, Anaerobiosis, Biomarkers, Cell Differentiation, Chondrocytes, Energy Metabolism, Glucose, Glutamine, Glycolysis, Humans, Iridoids, Mesenchymal Stromal Cells, Osteocytes, Oxidation-Reduction, Oxidative Stress, Pyruvic Acid, Reactive Oxygen Species, Uncoupling Protein 2