Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Arbovirus transmission by the mosquito Aedes aegypti can be reduced by the introduction and establishment of the endosymbiotic bacteria Wolbachia in wild populations of the vector. Wolbachia spreads by increasing the fitness of its hosts relative to uninfected mosquitoes. However, mosquito fitness is also strongly affected by population size through density-dependent competition for limited food resources. We do not understand how this natural variation in fitness affects symbiont spread, which limits our ability to design successful control strategies. RESULTS: We develop a mathematical model to predict A. aegypti-Wolbachia dynamics that incorporates larval density-dependent variation in important fitness components of infected and uninfected mosquitoes. Our model explains detailed features of the mosquito-Wolbachia dynamics observed in two independent experimental A. aegypti populations, allowing the combined effects on dynamics of multiple density-dependent fitness components to be characterized. We apply our model to investigate Wolbachia field release dynamics, and show how invasion outcomes can depend strongly on the severity of density-dependent competition at the release site. Specifically, the ratio of released relative to wild mosquitoes required to attain a target infection frequency (at the end of a release program) can vary by nearly an order of magnitude. The time taken for Wolbachia to become established following releases can differ by over 2 years. These effects depend on the relative fitness of field and insectary-reared mosquitoes. CONCLUSIONS: Models of Wolbachia invasion incorporating density-dependent demographic variation in the host population explain observed dynamics in experimental A. aegypti populations. These models predict strong effects of density-dependence on Wolbachia dynamics in field populations, and can assist in the effective use of Wolbachia to control the transmission of arboviruses such as dengue, chikungunya and zika.

Original publication




Journal article


BMC Biol

Publication Date





Aedes aegypti, Bayesian statistical model, Dengue, Density-dependence, Fitness, Invasion, Mosquito, Vector-borne disease, Wolbachia, Zika, Aedes, Animals, Bayes Theorem, Models, Theoretical, Wolbachia, Zika Virus