Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: Cellular repolarization abnormalities occur unpredictably due to disease and drug effects, and can occur even in cardiomyocytes that exhibit normal action potentials (AP) under control conditions. Variability in ion channel densities may explain differences in this susceptibility to repolarization abnormalities. Here, we quantify the importance of key ionic mechanisms determining repolarization abnormalities following ionic block in human cardiomyocytes yielding normal APs under control conditions.Methods and Results:Sixty two AP recordings from non-diseased human heart preparations were used to construct a population of human ventricular models with normal APs and a wide range of ion channel densities. Multichannel ionic block was applied to investigate susceptibility to repolarization abnormalities. IKrblock was necessary for the development of repolarization abnormalities. Models that developed repolarization abnormalities over the widest range of blocks possessed low Na+/K+pump conductance below 50% of baseline, and ICaLconductance above 70% of baseline. Furthermore, INaKmade the second largest contribution to repolarizing current in control simulations and the largest contribution under 75% IKrblock. Reversing intracellular Na+overload caused by reduced INaKwas not sufficient to prevent abnormalities in models with low Na+/K+pump conductance, while returning Na+/K+pump conductance to normal substantially reduced abnormality occurrence, indicating INaKis an important repolarization current.Conclusions:INaKis an important determinant of repolarization abnormality susceptibility in human ventricular cardiomyocytes, through its contribution to repolarization current rather than homeostasis. While we found IKrblock to be necessary for repolarization abnormalities to occur, INaKdecrease, as in disease, may amplify the pro-arrhythmic risk of drug-induced IKrblock in humans.

Original publication




Journal article


Front Physiol

Publication Date





Na+/K+ pump, cardiac electrophysiology modeling, human, repolarization, sodium-potassium pump, variability