Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 Botanical Society of Scotland and Taylor & Francis. Background: Connections between mature trees and seedlings via ectomycorrhizal (EcM) hyphal networks existing in dipterocarp-dominated tropical rain forests of South-east Asia could have strong implications for seedling growth and survival and the maintenance of high diversity in such forests. Aim: To test whether EcM hyphal network connections are important for the growth and survival of dipterocarp seedlings. Methods: We conducted four independent experiments that prevented contact of experimental seedlings with an EcM network by using a series of fine meshes and/or plastic barriers. We measured the growth and survival (and foliar δ13C in one experiment) of seedlings of six dipterocarp species over intervals ranging from 11 to 29 months. Results: Seedling growth (diameter, height or leaf number) was unaffected by exclusion from the EcM network in three experiments and there were no differences in foliar δ13C values in the fourth. Seedling survival was reduced following exclusion from the EcM network in one experiment. Our results give little support to the hypothesis that dipterocarp seedlings growing in the shaded forest understorey benefit from being connected, through a common EcM network, to surrounding trees. Conclusions: We suggest that our negative results, in contrast to studies conducted in low diversity boreo-temperate or tropical forests, are due to these high diversity forests lacking host species-specific EcM fungi and therefore providing little opportunity for adaptive support of seedlings via hyphal networks.

Original publication

DOI

10.1080/17550874.2017.1283649

Type

Journal article

Journal

Plant Ecology and Diversity

Publication Date

01/11/2016

Volume

9

Pages

563 - 576