Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The sensory neurons of the embryonic mouse trigeminal ganglion are supported in culture by different neurotrophins at successive stages of development. Initially the neurons survive in response to BDNF and NT3 and later switch to becoming NGF-dependent (Buchman, V. I. and Davies, A. M. (1993), Development 118, 989-1001). To determine if this in vitro switch in neurotrophin responsiveness is physiologically relevant, we studied the timing of neuronal death in the trigeminal ganglia of embryos that are homozygous for null mutations in the trkA, trkB and trkC genes, which encode receptor tyrosine kinases for NGF, BDNF and NT3, respectively. In wild-type embryos, the number of pyknotic nuclei increased from E11 to peak between E13 and E14, and decreased gradually at later ages, becoming negligible by birth. Neuronal death in the trigeminal ganglia of trkA-/- embryos also peaked between E13 and E14, but was almost threefold greater than in wild-type embryos at this stage. Whereas there was no significant difference between the number of pyknotic nuclei in trkA-/- and wild-type embryos at E11 and E12, there was a substantial increase in the number of pyknotic nuclei in the trigeminal ganglia of trkB-/- at these earlier stages. Counts of the total number of neurons in E13 trigeminal ganglia revealed a marked decrease in trkB-/- but not trkA-/- or trkC-/- embryos. Consistent with the later onset of excessive neuronal death in trkA-/- embryos, there was a marked decrease in the neuronal complement of the trigeminal ganglia of trkA-/- embryos at E15. These results demonstrate that TrkB signalling is required for the in vivo survival of many trigeminal neurons during the early stages of target field innervation before they become NGF-dependent.


Journal article



Publication Date





3255 - 3261


Animals, Cell Death, Cell Nucleus, Gene Deletion, Mice, Mice, Inbred C57BL, Neurons, Afferent, Proto-Oncogene Proteins, Rabbits, Receptor Protein-Tyrosine Kinases, Receptor, Ciliary Neurotrophic Factor, Receptor, trkA, Receptor, trkC, Receptors, Nerve Growth Factor, Signal Transduction, Time Factors, Trigeminal Ganglion