Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The adrenal medulla receives its major presynaptic input from sympathetic preganglionic neurons that are located in the intermediolateral (IML) column of the thoracic spinal cord. The neurotrophic factor concept would predict that these IML neurons receive trophic support from chromaffin cells in the adrenal medulla. We show here that adrenal chromaffin cells in the adult rat store neurotrophin (NT)-4, but do not synthesize or store detectable levels of BDNF or NT-3, respectively. Preganglionic neurons to the adrenal medulla identified by retrograde tracing with fast blue or Fluoro-Gold (FG) express TrkB mRNA. After unilateral destruction of the adrenal medulla, 24% of IML neurons, i.e., all neurons that are preganglionic to the adrenal medulla in spinal cord segments T7-T10, disappear. Administration of NT-4 in gelfoams (6 microgram) implanted into the medullectomized adrenal gland rescued all preganglionic neurons as evidenced by their presence after 4 weeks. NT-3 and cytochrome C were not effective. The action of NT-4 is accompanied by massive sprouting of axons in the vicinity of the NT-4 source as monitored by staining for acetylcholinesterase and synaptophysin immunoreactivity, suggesting that NT-4 may enlarge the terminal field of preganglionic nerves and enhance their access to trophic factors. Analysis of TrkB-deficient mice revealed degenerative changes in axon terminals on chromaffin cells. Furthermore, numbers of FG-labeled IML neurons in spinal cord segments T7-T10 of NT-4-deficient adult mice were significantly reduced. These data are consistent with the notion that NT-4 from chromaffin cells operates through TrkB receptors to regulate development and maintenance of the preganglionic innervation of the adrenal medulla.


Journal article


J Neurosci

Publication Date





7272 - 7284


Adrenal Medulla, Age Factors, Animals, Axons, Chromaffin Cells, Female, Ganglia, Sympathetic, Gene Expression Regulation, Developmental, Male, Mice, Mice, Knockout, Microscopy, Electron, Nerve Degeneration, Nerve Growth Factors, Neurons, Neuroprotective Agents, RNA, Messenger, Rats, Rats, Sprague-Dawley, Rats, Wistar, Receptor Protein-Tyrosine Kinases, Receptor, Ciliary Neurotrophic Factor, Receptors, Nerve Growth Factor, Spinal Cord, Synapses