Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Variation in insect herbivory can lead to population structure in plant hosts as indicated by defence traits. In annual herbaceous, defence traits may vary between geographic areas but evidence of such patterns is lacking for long-lived species. This may result from the variety of selection pressures from herbivores, long distance gene flow, genome properties, and lack of research. We investigated the antagonistic interaction between white spruce (Picea glauca) and spruce budworm (SBW, Choristoneura fumiferana) the most devastating forest insect of eastern North America in common garden experiments. White spruces that are able to resist SBW attack were reported to accumulate the acetophenones piceol and pungenol constitutively in their foliage. We show that levels of these acetophenones and transcripts of the gene responsible for their release is highly heritable and that their accumulation is synchronized with the most devastating stage of SBW. Piceol and pungenol concentrations negatively correlate with rate of development in female SBW and follow a non-random geographic variation pattern that is partially explained by historical damage from SBW and temperature. Our results show that accumulation of acetophenones is an efficient resistance mechanism against SBW in white spruce and that insects can affect population structure of a long-lived plant.

Original publication

DOI

10.1038/srep42273

Type

Journal article

Journal

Sci Rep

Publication Date

16/02/2017

Volume

7