Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Olfactory deficits are a common (often prodromal) symptom of neurodegenerative or psychiatric disorders. As such, olfaction could have great potential as an early biomarker of disease, for example using neuroimaging to investigate the breakdown of structural connectivity profile of the primary olfactory networks. We investigated the suitability for this purpose in two existing neuroimaging maps of olfactory networks. We found problems with both existing neuroimaging maps in terms of their structural connectivity to known secondary olfactory networks. Based on these findings, we were able to merge the existing maps to a new template map of olfactory networks with connections to all key secondary olfactory networks. We introduce a new method that combines diffusion tensor imaging with probabilistic tractography and pattern recognition techniques. This method can obtain comprehensive and reliable fingerprints of the structural connectivity underlying the neural processing of olfactory stimuli in normosmic adults. Combining the novel proposed method for structural fingerprinting with the template map of olfactory networks has great potential to be used for future neuroimaging investigations of olfactory function in disease. With time, the proposed method may even come to serve as structural biomarker for early detection of disease.

Original publication




Journal article


Sci Rep

Publication Date