Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The α-, β- and δ-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole-cell patch-clamp recordings from cells in intact mouse islets (N = 288 recordings) to investigate whether it is possible to reliably identify cell type (α, β or δ) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in each recorded cell. Individually, none of the variables could reliably distinguish the cell types. We therefore constructed a logistic regression model that included all quantified variables, to determine whether they could together identify cell type. The model identified cell type with 94% accuracy. This model was applied to a dataset of cells recorded from hyperglycaemic βV59M mice; it correctly identified cell type in all cells and was able to distinguish cells that co-expressed insulin and glucagon. Based on this revised functional identification, we were able to improve conductance-based models of the electrical activity in α-cells and generate a model of δ-cell electrical activity. These new models could faithfully emulate α- and δ-cell electrical activity recorded experimentally.

Original publication

DOI

10.1098/rsif.2016.0999

Type

Journal article

Journal

J R Soc Interface

Publication Date

03/2017

Volume

14

Keywords

conductance-based models, islet electrophysiology, logistic regression, α-cell, β-cell, δ-cell, Animals, Electrophysiological Phenomena, Hyperglycemia, Islets of Langerhans, Mice, Mice, Knockout, Models, Biological