Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of the sarcoplasmic reticulum (the ryanodine receptor), raising the possibility that cADP-ribose may influence arrhythmogenic mechanisms in the heart. 8-Amino-cADP-ribose, an antagonist of cADP-ribose, suppressed oscillatory activity associated with overloading of intracellular Ca2+ stores in cardiac myocytes exposed to high doses of the beta-adrenoreceptor agonist isoproterenol or the Na+/K+-ATPase inhibitor ouabain. The oscillations suppressed by 8-amino-cADP-ribose included intracellular Ca2+ waves, spontaneous action potentials, after-depolarizations, and transient inward currents. Another antagonist of cADP-ribose, 8-bromo-cADP-ribose, was also effective in suppressing isoproterenol-induced oscillatory activity. Furthermore, in the presence of ouabain under conditions in which there was no arrhythmogenesis, exogenous cADP-ribose was found to be capable of triggering spontaneous contractile and electrical activity. Because enzymatic machinery for regulating the cytosolic cADP-ribose concentration is present within the cell, we propose that 8-amino-cADP-ribose and 8-bromo-cADP-ribose suppress cytosolic Ca2+ oscillations by antagonism of endogenous cADP-ribose, which sensitizes the Ca2+ release channels of the sarcoplasmic reticulum to Ca2+.

Original publication




Journal article


J Biol Chem

Publication Date





17820 - 17827


Action Potentials, Adenosine Diphosphate Ribose, Animals, Anti-Arrhythmia Agents, Arrhythmias, Cardiac, Calcium, Cells, Cultured, Cyclic ADP-Ribose, Fura-2, Guinea Pigs, Heart, Image Processing, Computer-Assisted, Isoproterenol, Microscopy, Confocal, Ouabain, Patch-Clamp Techniques, Ryanodine Receptor Calcium Release Channel