Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the present study, channelrhodopsin 2 (ChR2) was specifically introduced into murine cells expressing the Phenylethanolamine n-methyltransferase (Pnmt) gene, which encodes for the enzyme responsible for conversion of noradrenaline to adrenaline. The new murine model enabled the identification of a distinctive class of Pnmt-expressing neuroendocrine cells and their descendants (i.e. Pnmt+ cell derived cells) within the heart. Here, we show that Pnmt+ cells predominantly localized to the left side of the adult heart. Remarkably, many of the Pnmt+ cells in the left atrium and ventricle appeared to be working cardiomyocytes based on their morphological appearance and functional properties. These Pnmt+ cell derived cardiomyocytes (PdCMs) are similar to conventional myocytes in morphological, electrical and contractile properties. By stimulating PdCMs selectively with blue light, we were able to control cardiac rhythm in the whole heart, isolated tissue preparations and single cardiomyocytes. Our new murine model effectively demonstrates functional dissection of cardiomyocyte subpopulations using optogenetics, and opens new frontiers of exploration into their physiological roles in normal heart function as well as their potential application for selective cardiac repair and regeneration strategies.

Original publication




Journal article


Sci Rep

Publication Date





Animals, Calcium Signaling, Electrophysiological Phenomena, Fluorescent Antibody Technique, Gene Expression, Genes, Reporter, Heart Rate, Immunohistochemistry, Mice, Mice, Transgenic, Myocardium, Myocytes, Cardiac, Optogenetics, Phenylethanolamine N-Methyltransferase